Let $D$ be an integral domain with quotient field $K$ and $\Omega$ a finitesubset of $D$. McQuillan proved that the ring ${\rm Int}(\Omega,D)$ ofpolynomials in $K[X]$ which are integer-valued over $\Omega$, that is, $f\inK[X]$ such that $f(\Omega)\subset D$, is a Pr\"ufer domain if and only if $D$is Pr\"ufer. Under the further assumption that $D$ is integrally closed, wegeneralize his result by considering a finite set $S$ of a $D$-algebra $A$which is finitely generated and torsion-free as a $D$-module, and the ring${\rm Int}_K(S,A)$ of integer-valued polynomials over $S$, that is, polynomialsover $K$ whose image over $S$ is contained in $A$. We show that the integralclosure of ${\rm Int}_K(S,A)$ is equal to the contraction to $K[X]$ of ${\rmInt}(\Omega_S,D_F)$, for some finite subset $\Omega_S$ of integral elementsover $D$ contained in an algebraic closure $\bar K$ of $K$, where $D_F$ is theintegral closure of $D$ in $F=K(\Omega_S)$. Moreover, the integral closure of${\rm Int}_K(S,A)$ is Pr\"ufer if and only if $D$ is Pr\"ufer. The result isobtained by means of the study of pullbacks of the form $D[X]+p(X)K[X]$, where$p(X)$ is a monic non-constant polynomial over $D$: we prove that the integralclosure of such a pullback is equal to the ring of polynomials over $K$ whichare integral-valued over the set of roots $\Omega_p$ of $p(X)$ in $\bar K$.
展开▼
机译:假定$ D $是商域$ K $和$ \ Omega $是$ D $有限子集的整数域。 McQuillan证明了$ K [X] $中多项式的环$ {\ rm Int}(\ Omega,D)$的整数值超过$ \ Omega $,即$ f \ inK [X] $使得$ f(\ Omega)\ subset D $当且仅当$ D $为Pr \“ ufer时,是Pr \” ufer域。在进一步假设$ D $是整体封闭的情况下,通过考虑有限生成的且无扭转的$ D $-代数$ A $的有限集$ S $作为$ D $模块,我们一般化了他的结果,并且超过$ S $的整数值多项式的ring $ {\ rm Int} _K(S,A)$,即,超过$ S $的图像的超过$ K $的多项式包含在$ A $中。我们证明对于某些有限子集$ {\ rm Int} _K(S,A)$的整数闭包等于$ {\ rmInt}(\ Omega_S,D_F)$到$ K [X] $的收缩。包含在$ K $的代数闭包$ \ bar K $中的$ D $上的整数元素的\ Omega_S $,其中$ D_F $是$ F = K(\ Omega_S)$中$ D $的整数闭包。此外,当且仅当$ D $是Pr \“ ufer时,$ {\ rm Int} _K(S,A)$的整数闭包才是Pr \” ufer。通过研究形式为$ D [X] + p(X)K [X] $的拉回获得结果,其中$ p(X)$是超过$ D $的单项非常数多项式:我们证明这样的回撤的整数闭包等于$ K $之上的多项式环,它们在$ \ bar K $中的$ p(X)$的根根\\ Omega_p $的集合中是整数值。
展开▼